Examples
Use these examples to learn best practices for using the inference API.
Image generation
runwayml/stable-diffusion-v1-5
or any other image model listed in Inference can be used to to generate images.
- Make a request using our API
curl https://api.together.xyz/inference \
-H "Content-Type: application/json" \
-H "Authorization: Bearer YOUR_API_KEY" \
-H "User-Agent: YOUR_APP_NAME" \
-d '{"model": "runwayml/stable-diffusion-v1-5", "prompt": "Space robots", "n": 4, "steps": 20 }' \
-o output.json
This request queries the StableDiffusion model to generate images with a prompt of "Space robots". The n parameter specifies how many images the API will return. You should get a response back that resembles the following:
{
"prompt": ["Space robots"],
"model": "runwayml/stable-diffusion-v1-5",
"model_owner": "",
"tags": {},
"num_returns": 4,
"args": {
"model": "runwayml/stable-diffusion-v1-5n",
"prompt": "Space robots",
"n": 4,
"steps": 20
},
"output": {
"choices": [
{
"image_base64": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwc..."
},
{
"image_base64": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwc..."
},
{
"image_base64": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwc..."
},
{
"image_base64": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwc..."
}
],
"result_type": "image-model-inference"
},
"status": "finished",
"subjobs": []
}
From the above response you can read the output images from the output['choices'][0]['image_base64']
.
- Now you've generated your first images. You can extract them to JPEG files by running:
cat output.json | jq -r ".output.choices[0].image_base64" | base64 -d > img1.jpg
cat output.json | jq -r ".output.choices[1].image_base64" | base64 -d > img2.jpg
- You can also query the API with any HTTP client you like, for example you can do so with Python
import requests
endpoint = 'https://api.together.xyz/inference'
res = requests.post(endpoint, json={
"model": "runwayml/stable-diffusion-v1-5",
"prompt": "Space robots",
"n": 4,
"steps": 20
}, headers={
"Authorization": "Bearer <YOUR_API_KEY>",
"User-Agent": "<YOUR_APP_NAME>"
})
print(res.json())
To query with an input image, try the image_base64
parameter. For best results please send 768x768 JPEG images base64-encoded.
import requests
endpoint = 'https://api.together.xyz/inference'
res = requests.post(endpoint, json={
"model": "runwayml/stable-diffusion-v1-5",
"prompt": "Space robots",
"request_type": "image-model-inference",
"width": 512,
"height": 512,
"steps": 20,
"n": 4,
"image_base64": "<IMAGE_BASE64>",
}, headers={
"Authorization": "Bearer <YOUR_API_KEY>",
})
print(res.json())
Image generation with a negative prompt
You can use the Together Inference API to generate images from a text prompt using any supported model. In this tutorial you will learn how to query the Stable Diffusion XL model with both a text prompt and a negative prompt. By the end of this tutorial, you will have a Python script that can query the Together Inference API to generate images along with a negative prompt to tell the model what not to include in the generated image.
- Set an environment variable called
TOGETHER_API_KEY
to your API key in your user settings. - Create a text file named "generate_image.py"
- Copy the following text into the file.
import base64
import os
import requests
url = "https://api.together.xyz/inference"
model = "stabilityai/stable-diffusion-xl-base-1.0"
prompt = "Tokyo crossing"
negative_prompt = "people"
print(f"Model: {model}")
print(f"Prompt: {repr(prompt)}")
print(f"Negative Prompt: {repr(negative_prompt)}")
payload = {
"model": model,
"prompt": prompt,
"results": 2,
"width": 1024,
"height": 1024,
"steps": 20,
"seed": 42,
"negative_prompt": negative_prompt,
}
headers = {
"accept": "application/json",
"content-type": "application/json",
"Authorization": f"Bearer {os.environ['TOGETHER_API_KEY']}"
}
response = requests.post(url, json=payload, headers=headers, stream=True)
response.raise_for_status()
response_json = response.json()
# save the first image
image = response_json["output"]["choices"][0]
with open("tokyocrossing.png", "wb") as f:
f.write(base64.b64decode(image["image_base64"]))
- Run the script with:
python3 generate_image.py
- Replace
python3
with the appropriate python interpreter for your platform
The output will be written to a file called tokyocrossing.png
in the current working directory.
With Stable Diffusion XL 1.0, you should have just generated an image of a crosswalk in Tokyo without any people in it.
Further reading
Prompt engineering is a relatively new discipline for developing and optimizing prompts to efficiently use language models (LMs) for a wide variety of applications and research topics. The Prompt Engineering Guide is a great introduction to the subject.
Updated about 1 month ago